Space-saving Signal Conditioners M3-UNIT Series			
UNIVERSAL TRANSMITTER	MODEL	M3LU	

MODEL \& SUFFIX CODE SELECTION

INPUT SELECTION

-DC Current \& Voltage

Current: Usable range $0-20 \mathrm{~mA}$; min. span 1 mA
Millivolt: Usable range $\pm 1 \mathrm{~V}$; min. span 4 mV
Voltage: Usable range $\pm 10 \mathrm{~V}$; min. span 1 V
-Thermocouples
(PR), K, E, J, T, B, R, S, C (WRe 5-26), N, U, L, P (Platinel II)
\rightarrow RTD
Pt 100, Pt 200, Pt 300, Pt 400, Pt 500, Pt 1000,
Ni 100, Ni 120, Ni 508.4, Ni-Fe 604, Cu $10 @ 25^{\circ} \mathrm{C}$
Pt 50 , JPt 100
-Potentiometers
Total resistance $80 \Omega-4000 \Omega$
-Resistance
Total resistance $10 \Omega-4000 \Omega$

OUTPUT SELECTION

-DC Current: Usable range $0-20 \mathrm{~mA}$; min. span 1 mA
$\rightarrow D C$ Voltage
Narrow Spans: Usable range $\pm 2.5 \mathrm{~V}$; min. span 250 mV
Wide Spans: Usable range $\pm 10 \mathrm{~V}$; min. span 1 V

POWER INPUT

M2 : $100-240 \mathrm{~V}$ AC
R4 : $10-32 \mathrm{~V}$ DC
CONFIGURATION OPTIONS
A : PC and field configurable
B : Field configurable

ORDERING INFORMATION

Special code number. Orders will be shipped at default factory settings ($4-20 \mathrm{~mA}$ input $/ 4-20 \mathrm{~mA}$ output).
Ordering example:

- Code number (e.g. M3LU-R4/A)

RELATED PRODUCTS

- PC configurator connection kit (model: M3CON)

GENERAL SPECIFICATIONS

Connection: Removable terminal block
Housing material: Flame-resistant resin (grey)
Isolation: Input to output to power
Overrange output: Approx. -15-+115\%
(Negative current output is not available even within this range.)
Fine zero and span adjustments: $\pm 15 \%$ via the front control buttons

Functions \& Features

- Universal input: mV, V, mA, T/C, RTD, resistance and potentiometer
- Easy 'One-Step Cal' calibration using the front three control buttons without needing a PC; PC software is also usable.
- Both input and output type and range are configurable

Typical Applications

- Signal conversion between control room and field instrumentation with isolation
- Ideal for use as a fast solution, multifunctional spare part

Burnout (T/C \& RTD): Upscale, downscale or no burnout selectable; Also detects wire breakdown and overrange input exceeding the electrical design limit for DC input.
Cold Junction Compensation (T/C): CJC sensor (included) to be attached to the input terminals

Configuration

'One-Step Cal' calibration: With I/O type and the full-scale range configured via the internal DIP switches, precise 0% and 100% ranges are calibrated via the front control buttons with a help of LED.
PC configurator (model: M3CON): Via Windows PC connected to the front jack. Programmable features include:

- I/O type and range
- Zero and span adjustments - Burnout

Status indicator LED: Tri-color (green/amber/red) LED; Flashing patterns indicate operation status of the transmitter.

INPUT

Input type and range are configurable. See Table 11 for the available input type, the minimum span, the maximum range, the conformance range and the input conversion accuracy.

■DC CURRENT: 50Ω resistor incorporated (0.5 W)

■DC mV \& VOLTAGE

Input resistance: $1 \mathrm{M} \Omega$ minimum

■THERMOCOUPLE

Input resistance: $1 \mathrm{M} \Omega$ minimum
Burnout sensing: $130 \mathrm{nA} \pm 10 \%$

■RTD (2-wire, 3 -wire or 4 -wire)
Excitation: $0.2 \mathrm{~mA} \pm 10 \%$
Allowable leadwire resistance: 20Ω per wire

POTENTIOMETER

Excitation: $0.2 \mathrm{~mA} \pm 10 \%$
Allowable leadwire resistance: 20Ω per wire

■RESISTANCE (2-wire, 3 -wire or 4 -wire)
Excitation: $0.2 \mathrm{~mA} \pm 10 \%$
Allowable leadwire resistance: 20Ω per wire

OUTPUT

■DC CURRENT
Maximum range: $0-20 \mathrm{~mA} \mathrm{DC}$
Minimum span: 1 mA
Conformance range: $0-24 \mathrm{~mA}$ DC
Offset: Lower range can be any specific value within the input range provided that the minimum span is maintained.
Load resistance: Output drive 15 V maximum at 22 mA
(Range) $0-20 \mathrm{~mA}: 750 \Omega$ maximum

■DC VOLTAGE

Narrow Spans (mV)
Maximum range: $-2.5-+2.5 \mathrm{~V}$ DC
Minimum span: 250 mV
Conformance range: $-3-+3 \mathrm{~V}$ DC
Wide Spans (V)
Maximum range: $-10-+10 \mathrm{~V}$ DC
Minimum span: 1V
Conformance range: $-11.5-+11.5 \mathrm{~V}$ DC
Offset: Lower range can be any specific value within the input range provided that the minimum span is maintained.
Load resistance: Output drive 10 mA maximum; 5 mA for negative output
(Range) $0-10 \mathrm{~V} \quad: 1 \mathrm{k}$ (Ω minimum)
$-10-0 \mathrm{~V} \quad: 2 \mathrm{k}$
$0-2.5 \mathrm{~V} \quad: 250$
$-2.5-0 \mathrm{~V} \quad: 500$

INSTALLATION

Power input

AC: \quad Operational voltage range $85-264 \mathrm{~V} \mathrm{AC}$; $47-66 \mathrm{~Hz}$; approx. 4 VA at 100 V approx. 5 VA at 200 V approx. 6 VA at 264 V
DC: \quad Operational voltage range $9-36 \mathrm{~V}$ DC; approx. 2 W ; ripple 10% p-p max.
Operating temperature: -25 to $+65^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$
Operating humidity: 0 to $95 \% \mathrm{RH}$ (non-condensing)
Mounting: DIN rail
Dimensions: W18 $\times \mathrm{H} 106 \times$ D110.5 mm
($0.71^{\prime \prime} \times 4.17$ " $\times 4.35$ ")
See General Spec. Sheet Figure A-1.
Weight: $\quad 100 \mathrm{~g}(0.22 \mathrm{lbs})$
Terminal assignment: See General Spec. Sheet Figure B-2.

PERFORMANCE

Accuracy: See Table 11.
Cold junction compensation error:
$\pm 0.5^{\circ} \mathrm{C}$ maximum at $10-40^{\circ} \mathrm{C}$
$\pm 1.0^{\circ} \mathrm{C}$ maximum at $0-50^{\circ} \mathrm{C}$
$\pm 0.9^{\circ} \mathrm{F}$ maximum at $50-104^{\circ} \mathrm{F}$
$\pm 1.8^{\circ} \mathrm{F}$ maximum at $32-122^{\circ} \mathrm{F}$
Temp. coefficient: $\pm 0.015 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.008 \% /{ }^{\circ} \mathrm{F}\right)^{*}$ at -5 to $+55^{\circ} \mathrm{C}$ [23 to $131^{\circ} \mathrm{F}$] of max. range
Response time: $\leq 0.2 \mathrm{sec}$. $(0-90 \%$, DC input)**
Burnout response: $\leq 10 \mathrm{sec}$.
Line voltage effect: $\pm 0.1 \%$ over voltage range
Insulation resistance: $\geq 100 \mathrm{M} \Omega$ with 500 V DC
Dielectric strength
AC powered: 2000 V AC @1 minute
(input to output to power to ground)
DC powered: 1500 V AC @1 minute
(input to output or power to ground)
$500 \mathrm{~V} @ 1$ minute (output to power)
$* \pm 0.03 \% /{ }^{\circ} \mathrm{C}\left(\pm 0.016 \% /{ }^{\circ} \mathrm{F}\right)$ for the following conditions: $\mathrm{DC} /$ TC input spans $\leq 10 \mathrm{mV}$; RTD/POT, resistance spans $\leq 80 \Omega$; in an ambient exceeding $55^{\circ} \mathrm{C}\left(131^{\circ} \mathrm{F}\right)$ or below $-5^{\circ} \mathrm{C}\left(23^{\circ} \mathrm{F}\right)$. **With the Option A, the Sync Filter set to the fastest frequency on the PC Configurator Software. Default is set to have 0.5 sec . response.

STANDARDS \& APPROVALS

CE conformity: EMC Directive (89/336/EEC)
EMI EN61000-6-4
EMS EN61000-6-2
Low Voltage Directive (73/23/EEC)
Installation category II
Pollution degree 2
Max. operating voltage 300 V
Input or output to power - Reinforced insulation
Input to output - Basic insulation

SCHEMATIC CIRCUITRY \& CONNECTION DIAGRAM

■DC POWERED TYPE

■AC POWERED TYPE

EXTERNAL DIMENSIONS \& TERMINAL ASSIGNMENTS mm (inch)

-When mounting, no extra space is needed between units.

ONE-STEP-CAL CALIBRATION

CONFIGURATION MODES \& DIP SW

When you program the transmitter module, two configuration modes are available: Field Configuration using DIP SW / control buttons, and PC Software. (Option B type is for the field configuration only.)

The internal DIP switches are used to configure input and output type. Once the module is configured, precise ranges are set up with the front control buttons using a simulator connected to the input terminals and a multimeter connected to the output terminals as a reference.

INPUT \& OUTPUT RANGING

For example, suppose that the DIP switches are configured for the J type thermocouple ($-210-+1200^{\circ} \mathrm{C}$ full-range). Turn the power supply to the transmitter on and press MODE button to enter to the Input Calibration Mode. Apply the desired minimum (e.g. $0^{\circ} \mathrm{C}$) and maximum (e.g. $400^{\circ} \mathrm{C}$) input levels and push the DOWN (zero) and UP (span) respectively to set the input range to $0-400^{\circ} \mathrm{C}$.

Then the output range can be calibrated in a similar manner after moving to the Output Calibration Mode by pressing MODE button again. Increase or decrease the simulated input until the output meter shows the desired levels and push the DOWN (zero) and UP (span) respectively for the minimum (e.g. 4 mA) and maximum (e.g. 20 mA) levels.
The front LEDs' colors and flashing patterns help you to easily
identify the transmitter's status and confirm the setup actions in each step of Calibration Modes. See detailed explanation in "Calibration Flow Chart."
The calibrated input and output ranges are stored in the internal memory. The module reads the DIP-switch-calibrated configuration only once after the power supply is turned on. Set the switches with the power supply removed.

FINE ZERO \& SPAN ADJUSTMENTS

After the transmitter is installed and operational, fine zero and span tuning can be also performed using the front control buttons. Both zero and span are adjustable within $\pm 15 \%$.

PC SOFTWARE CONFIGURATION

When you need to apply the same setting to multiple transmitters, downloading one setting from the PC is convenient. The PC Configurator Connection Kit (model: M3CON) including the dedicated cable and the software CD is available separately
Turn the transmitter to PC Configuration Mode (See Table 1 below) and all programmable features can be set up on a PC regardless of other DIP SW setting except for: (1) JP2 to be switched from 1-2 to $2-3$ for DC voltage input (See Notes under Table 2), and (2) the output type must be selected with the DIP SW1-1 through SW1-4 (See Table 10).
For detailed information on the PC configuration, refer to the M3CON data sheet.

EXTERNAL \& INTERNAL VIEWS

■FRONT VIEW

■SIDE VIEW

*For Voltage Input (V) range, switch the JP2 jumper to the $2-3$ position.
Normal Position
(other than DC Voltage [V] range)

DC Voltage [V] Range Position

$$
\begin{array}{|l|ll|l}
\hline \mathrm{O} & \mathrm{O} & \mathrm{O} & \\
\hline 1 & 2 & 3 \\
\hline 1 & 2 P 2 \\
\hline
\end{array}
$$

DIP SWITCH SETTINGS

■CONFIGURATION MODE (SW3)
 Table 1

MODE	SW3-8	Configuration mode can be confirmed with the front LED.			
DIP SW PC	OFF ON	Table 2			
INPUT TYPE (SW3)					
INPUT	SW3-7	SW3-6	SW3-5	SW3-4...3-1	
DC Current	OFF	OFF	OFF	-	
DC mV	OFF	OFF	ON	-	
DC Voltage*1	OFF	ON	OFF	-	
Thermocouple	OFF	ON	ON	Table 3	
RTD	ON	OFF	OFF	Table 4	
Potentiometer	ON	OFF	ON	Table 5	
Resistance	ON	ON	OFF	-	

*1. JP2 position switched from (1-2) to (2-3) for both DIP SW and PC configuration.

■THERMOCOUPLE TYPE (SW3)

Table 3

T/C	SW3-4	SW3-3	SW3-2	SW3-1
(PR)	OFF	OFF	OFF	OFF
K (CA)	OFF	OFF	OFF	ON
E (CRC)	OFF	OFF	ON	OFF
J (IC)	OFF	OFF	ON	ON
T (CC)	OFF	ON	OFF	OFF
B (RH)	OFF	ON	OFF	ON
R	OFF	ON	ON	OFF
S	OFF	ON	ON	ON
C (WRe 5-26)	ON	OFF	OFF	OFF
N	ON	OFF	OFF	ON
U	ON	OFF	ON	OFF
L	ON	OFF	ON	ON
P (Platinel II)	ON	ON	OFF	OFF

■RTD TYPE (SW3)

Table 4

RTD	SW3-4	SW3-3	SW3-2	SW3-1
Pt 100	OFF	OFF	OFF	OFF
Pt 200	OFF	OFF	OFF	ON
Pt 300	OFF	OFF	ON	OFF
Pt 400	OFF	OFF	ON	ON
Pt 500	OFF	ON	OFF	OFF
Pt 1000	OFF	ON	OFF	ON
Pt 50Ω	OFF	ON	ON	OFF
JPt 100	OFF	ON	ON	ON
Ni 100	ON	OFF	OFF	OFF
Ni 120	ON	OFF	OFF	ON
Ni 508.4Ω	ON	OFF	ON	OFF
Ni-Fe 604	ON	OFF	ON	ON
Cu $10 @ 25^{\circ} \mathrm{C}$	ON	ON	OFF	OFF

■POTENTIOMETER (SW3)				Table 5
RESISTANCE	SW3-4	SW3-3	SW3-2	SW3-1
$2500-4000 \Omega$	OFF	OFF	OFF	OFF
$1200-2500 \Omega$	OFF	OFF	OFF	ON
$600-1200 \Omega$	OFF	OFF	ON	OFF
$300-600 \Omega$	OFF	OFF	ON	ON
$150-300 \Omega$	OFF	ON	OFF	OFF
$100-150 \Omega$	OFF	ON	OFF	ON

■RTD/RESISTANCE WIRES (SW2)
Table 6

WIRES	SW2-2	SW2-1
2-wire	OFF	OFF
3-wire	OFF	ON
4-wire	ON	ON

■COLD JUNCTION COMPENSATION (SW2) Table 7

COLD JUNCTION COMP	SW2-3
Disable	ON
Enable	OFF

■OUTPUT TYPE / PC CONFIG (SW1)
Table 10

OUTPUT	SW1-4	SW1-3	SW1-2	SW1-1
$0-20 \mathrm{~mA}$	OFF	ON	OFF	OFF
$-2.5-+2.5 \mathrm{~V}$	ON	OFF	OFF	ON
$-10-+10 \mathrm{~V}$	ON	OFF	ON	OFF

INPUT TYPE	$\begin{aligned} & \text { MIN. } \\ & \text { SPAAN } \end{aligned}$	MAXIMUM RANGE	ACCURACY *1					
DC Current	1 mA	0 to 20 mA	$\pm 0.1 \%$					
DC Millivolt	4 mV	-1 to +1V	$\begin{aligned} & \pm 10 \mu \mathrm{~V} \text { at F.S. input } \leq 50 \mathrm{mV} \\ & \pm 40 \mu \mathrm{~V} \text { at F.S. input } \leq 200 \mathrm{mV} \\ & \pm 60 \mu \mathrm{~V} \text { at F.S. input } \leq 500 \mathrm{mV} \\ & \pm 80 \mu \mathrm{~V} \text { at F.S. input }>500 \mathrm{mV} \end{aligned}$					
DC Voltage	1V	-10 to +10 V	$\pm 0.1 \%$					
Potentiometer	80Ω	0 to 4000Ω	$\pm 0.1 \%$					
Resistance	10Ω	0 to 4000Ω	$\pm 0.1 \Omega$					
Thermocouple	${ }^{\circ} \mathrm{C}$				${ }^{\circ} \mathrm{F}$			
	$\begin{aligned} & \text { MIN. } \\ & \text { SPAN } \end{aligned}$	MAXIMUM RANGE	CONFORMANCE RANGE	$\begin{gathered} \text { ACCURACY } \\ * 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { MIN. } \\ & \text { SPAN } \end{aligned}$	MAXIMUM RANGE	CONFORMANCE RANGE	$\underset{* 1}{\left\lvert\, \begin{array}{c} \text { ACCURACY } \\ \hline \end{array}\right.}$
(PR)	20	0 to 1760	0 to 1760	± 1.00	36	32 to 3200	32 to 3200	± 1.80
K (CA)	20	-270 to +1370	-150 to +1370	± 0.25	36	-454 to +2498	-238 to +2498	± 0.45
E (CRC)	20	-270 to +1000	-170 to +1000	± 0.20	36	-454 to +1832	-274 to +1832	± 0.36
J (IC)	20	-210 to +1200	-180 to +1200	± 0.25	36	-346 to +2192	-292 to +2192	± 0.45
T (CC)	20	-270 to +400	-170 to +400	± 0.25	36	-454 to +752	-274 to +752	± 0.45
B (RH)	20	100 to 1820	400 to 1760	± 0.75	36	212 to 3308	752 to 3200	± 1.35
R	20	-50 to +1760	200 to 1760	± 0.50	36	-58 to 3200	392 to 3200	± 0.90
S	20	-50 to +1760	0 to 1760	± 0.50	36	-58 to +3200	32 to 3200	± 0.90
C (WRe 5-26)	20	0 to 2315	0 to 2315	± 0.25	36	32 to 4199	32 to 4199	± 0.45
N	20	-270 to +1300	-130 to +1300	± 0.30	36	-454 to +2372	-202 to +2372	± 0.54
U	20	-200 to +600	-200 to +600	± 0.20	36	-328 to +1112	-328 to +1112	± 0.36
L	20	-200 to +900	-200 to +900	± 0.25	36	-328 to +1652	-328 to +1652	± 0.45
P (Platinel II)	20	0 to 1395	0 to 1395	± 0.25	36	32 to 2543	32 to 2543	± 0.45
RTD	${ }^{\circ} \mathrm{C}$				${ }^{\circ} \mathrm{F}$			
	$\begin{aligned} & \text { MIN. } \\ & \text { SPAN } \end{aligned}$	MAXIMUM RANGE		$\underset{* 1}{\left.\left\lvert\, \begin{array}{c} \text { ACCURACY } \\ \hline \end{array}\right.\right)}$	$\begin{aligned} & \text { MIN. } \\ & \text { SPAN } \end{aligned}$	MAXIMUM RANGE		$\underset{* 1}{\text { ACCURACY }}$
Pt 100 (JIS '97/DIN/IEC)	20	-200 to +850		± 0.15	36	-328 to +1562		± 0.27
Pt 200	20	-200 to +850		± 0.15	36	-328 to +1562-328 to +1562		± 0.27
Pt 300	20	-200 to +85		± 0.15	36			± 0.27
Pt 400	20	-200 to +850		± 0.15	36	-328 to +1562		± 0.27
Pt 500	20	-200 to +850		± 0.15	36	-328 to +1562		± 0.27
Pt 1000	20	-200 to +850		± 0.15	36	-328 to +1562		± 0.27
Pt 50 (JIS '81)	20	-200 to +649		± 0.15	36	-328 to	+1200	± 0.27
JPt 100 (JIS '89)	20	-200 to +510		± 0.15	36	-328 to	$+950$	± 0.27
Ni 100	20	-80 to +260		± 0.15	36	-112 to	$+500$	± 0.27
Ni 120	20	-80 to	+260	± 0.15	36	-112 to	$+500$	± 0.27
Ni 508.4	20	-50 to	+200	± 0.15	36	-58 to	+392	± 0.27
Ni-Fe 604	20	-200 to	+200	± 0.15	36	-328 to	+392	± 0.27
Cu 10 @ $25^{\circ} \mathrm{C}$	20	-50 to	+250	± 0.50	36	-58 to	+482	± 0.90

[^0]For current output, overall accuracy degrades another 0.1% with spans $\leq 2 \mathrm{~mA}$.

■CALCULATION EXAMPLES OF OVERALL ACCURACY IN \% -DC Voltage

1) $0-200 \mathrm{mV}$

Absolute value accuracy (Table 11): $40 \mu \mathrm{~V}$
$40 \mu \mathrm{~V} / 200000 \mu \mathrm{~V} \times 100=0.02 \%<0.1 \%$
Overall accucracy $= \pm 0.1 \%$ of span
2) $0-4 \mathrm{mV}$

Absolute value accuracy (Table 11): $10 \mu \mathrm{~V}$
$10 \mu \mathrm{~V} / 4000 \mu \mathrm{~V} \times 100=0.25 \%>0.1 \%$
Overall accucracy $= \pm 0.25 \%$ of span

- Thermocouple

1) K thermocouple, $0-1000^{\circ} \mathrm{C}$

Absolute value accuracy (Table 11): $0.25^{\circ} \mathrm{C}$
CJC error $\left(0.5^{\circ} \mathrm{C}\right)$ added: $0.75^{\circ} \mathrm{C}$
$0.75^{\circ} \mathrm{C} / 1000^{\circ} \mathrm{C} \times 100=0.075 \%<0.1 \%$
Overall accucracy including CJC error $= \pm 0.1 \%$ of span
2) K thermocouple, $50-150^{\circ} \mathrm{C}$

Absolute value accuracy (Table 11): $0.25^{\circ} \mathrm{C}$
CJC error $\left(0.5^{\circ} \mathrm{C}\right)$ added: $0.75^{\circ} \mathrm{C}$
$0.75^{\circ} \mathrm{C} /(150-50)^{\circ} \mathrm{C} \times 100=0.75 \%>0.1 \%$
Overall accucracy including CJC error $= \pm 0.75 \%$ of span

- RTD

1) Pt $100,-200-800^{\circ} \mathrm{C}$

Absolute value accuracy (Table 11): $0.15^{\circ} \mathrm{C}$
$0.15^{\circ} \mathrm{C} /(800--200)^{\circ} \mathrm{C} \times 100=0.015 \%<0.1 \%$
Overall accucracy $= \pm 0.1 \%$ of span
2) $\operatorname{Pt} 100,0-100^{\circ} \mathrm{C}$

Absolute value accuracy (Table 11): $0.15^{\circ} \mathrm{C}$
$0.15^{\circ} \mathrm{C} / 100^{\circ} \mathrm{C} \times 100=0.15 \%>0.1 \%$
Overall accucracy $= \pm 0.15 \%$ of span

[^0]: *1. DC Input: $\mathrm{Or} \pm 0.1 \%$ of span, whichever is greater.
 Thermocouple Input: [Accuracy + Cold Junction Compensation Error $0.5^{\circ} \mathrm{C}\left(0.9^{\circ} \mathrm{F}\right)$] or $\pm 0.1 \%$ of span, whichever is greater. RTD, Resistance Input: Or $\pm 0.1 \%$ of span, whichever is greater.

